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A Critical Analysis of DNA Data Compression Methods 

 Data compression is an area of research that has many applications spanning 

different technological fields; among the most important of these fields is that of DNA 

compression. With whole genome sequencing becoming increasingly practical and cost-

effective, the need for a superior space-saving algorithm is obvious. There are many 

research projects and feasible future applications that necessitate having many different 

sequenced genomes readily available in a form that can be easily decompressed and 

examined. 

 A single, uncompressed human genome in the form that is generated by 

companies such as Helicos Biosciences, Pacific Biosciences, 454, and Illumina can take 

up as much as 285 GB [6]. This amount of hard drive space usage makes keeping even a 

few fully-sequenced, uncompressed genomes on the same machine unrealistic, while 

transferring them between machines over a small bandwidth is out of the question. Data 

compression is not a new topic, and at first several general-purpose compression 

algorithms were used to store the DNA in a more efficient manner. Lempel-Ziv, or gzip 

compression, is a universal compression algorithm that has been used to store genetic 

data using an adaptive dictionary [10]. Standard encoding like gzip can reduce the space 

needed per nucleotide in human DNA asymptotically to two bits, since we only have four 

possible nucleotides. Eventually, algorithms were implemented that took characteristics 

of DNA into consideration, such as reverse complementation or point mutation, which 

could compress DNA beyond this previous gold standard. Several algorithms employing 

this kind of tactic are GenCompress [3] and BioCompress [5].  
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 Hundreds of algorithms have been proposed for DNA compression; this paper 

aims to explore several innovative advances made in DNA data compression, and the 

applications of these improved methods. Most of these algorithms operate with one of 

two purposes: either to simply achieve the tightest compression possible and save storage 

space on a computer, or compress the data in a fashion that allows for biological 

inference about either a single genome or multiple genomes. While there can be overlap 

between the two paradigms, in terms of influencing design they are quite different, 

requiring separate examination and evaluation. 

Standard Compression Goals 

 Saving disk and network space by compression is undeniably a worthwhile 

endeavor. This goal was instated long before the Human Genome Project was completed, 

and has continued to be a popular research topic for statisticians and biologists alike. 

While Lempel-Ziv provided a huge contribution that is still in use [10], advancements 

have been made since that have further simplified the task of storing and transferring 

genetic data. There is also evidence to suggest that while the major leaps in compression 

have already been made, there is room for improvement, even in the most sophisticated 

of algorithms. 

coil, 2007 

 There are two distinct ways of looking at DNA compression; the first of these is 

to attempt to compress individual biological sequences. This is what previously 

mentioned algorithms in this paper, GenCompress [3] and BioCompress [5], aimed to 

accomplish. However once the HGP was completed, advents in sequencing made the 
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need for full genome databases valid. At this point some researchers shifted their focus to 

compressing entire databases worth of genome data. A paper published by Timothy 

White and Michael Hendy in BMC Bioinformatics presents a software tool, “coil”, which 

exploits the idea of edit-tree coding to compress an entire database worth of data to a 

transmittable size [9].   

Method 

 coil revolves around a scheme that creates a series of trees of similar sequences, 

encoded in a fashion that saves as much space as possible. This is achieved through the 

following four-step process: 

1. Using a similarity measure related to Levenshtein distance computation, coil 

counts the number of length-k substrings that each sequence has in common with 

all the other sequences and groups sequences of high similarity. These groups are 

used to create a representative map with nodes symbolizing sequences and edges 

between nodes weighted differently according to strength of similarity. 

2. coil then constructs an encoding graph from the similarity graph computed in step 

one. This graph is made up of rooted trees with directed arcs representing 

similarity. 

3. Each tree must be encoded as well. The root of each tree is stored as the full 

sequence written out, and then each other sequence down the tree is “delta-

encoded” from its parents. That is, only differences from the parent sequence are 

recorded as opposed to the entire sequence.  

4. gzip or bzip is run on the entire graph to provide further compression [9]. 

Analysis 
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 coil was tested against four other compression programs: bz2, nrdb+bz2, PPMdi, 

and 7z. These are all variants of general compression algorithms (meaning they are not 

specific to DNA, with the exception of nrdb+bz2, which eliminates duplicate sequences).  

coil and 7z significantly outperformed all the other algorithms, with 7z edging coil on 

small datasets and coil proving optimal for large datasets. [9]  

 coil adopts a paradigm of “one off investment” which means at least one sequence 

in the original database must be stored in entirety to transmit the entire data set. The 

larger the dataset, the better the investment as the compression of more sequences far 

outweighs the cost of transmitting one or several in full. This also means that for smaller 

databases there are other methods that will, and did in the study’s published results, 

perform better than coil. Another limitation arises from the strategy employed in making 

the encoding trees. Because coil operates on a delta scheme for the encoding, this scheme 

works best on databases with highly similar, shorter sequences. In a potential situation 

where a database has been constructed to look for overarching genomic themes across 

species (such as one mentioned later), this method would theoretically do poorly and 

have problems other than space after compression. This is because the program attempts 

to pseudo-align all the different genomes (using k-tuple indexing) to construct a 

similarity graph. Using variable-length, dissimilar fragments could take either quadratic 

time or GB of RAM, both of which are impractical on a normal machine.  

Modified reference genome, 2008 

 There are a variety of different compression methods that have been researched 

and developed to produce results optimized for a specific need. Already mentioned are 

the attempt to compress a single genome (GenCompress , BioCompress) and the attempt 
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to compress a very large database of genomes (coil). An algorithm developed by 

Christley, et al shows research that was tailored to meet the need of transmitting a smaller 

number of genomes in a way that is extremely quick and easy. This algorithm assumes 

that SNPs and indels have been provided for the genomes being analyzed, and seeks to 

compress that variation data. 

Method 

 The algorithm designed in this paper makes small improvements upon the concept 

of using a common reference genome and storing additional genomes as variations from 

this one common reference [1]. There are four important novel details employed that 

enhance compression impressively beyond using a reference alone.  

 The first of these details is the use of variable-sized integers to store the position 

of SNP variations along the chromosome. SNPs that occur in very early positions in the 

chromosome do not require the full 4 bytes that are allotted to a standard integer data 

type, and can therefore be represented by a one, two or three-byte integer.  

 The second detail states that positions can be stored relative to the last variation, 

known as “DELTA” positions. Because variations tend to happen more frequently in 

close groups, using DELTA positioning reduces the size needed to represent position 

further. 

 The third technique employed uses a reference SNP map to decide whether a SNP 

is one of the common bi-alleles. In this case, a bitmap is used to indicate if a SNP is 

common or not. Depending on this answer, a variation can be stored using even less 

space than the normal two bits required to represent a nucleotide.  
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 Finally, K-mer partitioning is used to encode repeat sequences. Huffman encoding 

is used to represent common substrings of a computed “size k” in the sequence in the 

most efficient form possible [9]. 

Analysis 

 The modifications made to the well-known idea of using a reference genome and 

storing the differences may seem small, but they are extremely well thought-out and have 

a large impact on the factor of reduction. Compared to using gzip on the original 

variation map, this method provides a 4.5x better compression, resulting in a data size of 

4.1MB – small enough, as they make their title, to send as an email attachment. 

Human genomes as email attachments 

Table 1. 

Data sizes for compression techniques 

Compression SNPs Deletions Insertions Total 

 (KB) (KB) (KB) (KB) 

Entire genome    3 169 831 

Map to ref genome 68 519 1741 14 274 84 534 

Map to ref genome + gzip 14 803 588 2687 18 078 

VINT 13 733 765 803 15 301 

VINT/DELTA 6475 507 712 7694 

VINT/DELTA/DBSNP 3292 507 712 4511 

VINT/DELTA/DBSNP/KMER 3292 507 302 4101 

 [9] 
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 Using variable-sized integers (data type int) instead of regular integers is a bit of a 

no-brainer from a technological standpoint, but saving the positions in reference to each 

other is smart, considering the relative distances will always be smaller than the distance 

from the beginning of each chromosome. The only potential difficulty with this method is 

that the entire chromosome must be decoded to look for a SNP variation; storing the 

absolute positions enables an easier lookup. 

 It’s also clever to use a bitmap with a SNP variation map. Most SNPs are bi-

allele, which means they can easily be represented as one of two common values using a 

single bit instead of the usual two bits used to represent a nucleotide. A potential 

improvement would be to maintain several different haplotypes instead of a single SNP 

map. Using simple machine learning techniques, the program, based on previous “tag” 

SNPs it had encountered, could accurately predict and store later SNPs with a diminutive 

margin of error. This could be done without having to examine and potentially store an 

“uncommon” version of every single SNP [8]. 

 Many of the advancements moving forward in compression are going to be small 

and detail-oriented, and must make carefully calculated decisions about storage, as this 

study did. 

Biological Inference 

 Though standard compression is important, several studies have attempted to 

reach a slightly different goal: storing data in a manner that is not only efficient, but is 

encoded in a manner that is a particularly useful form for biological applications. This 
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can include phylogenetic sequence analysis, repeat element detection, structural variation 

analysis, and biological complexity evaluation.  

Life domain map, 2008 

 Menconi, et al conducted a different kind study with the goal of using 

compressibility of fragments as a measure to make inferences about the biological 

complexity of different organisms, and even distinguish between different domains. 

They’ve used the information content of a sequence, as defined by a lossless data 

compression algorithm [7], to define complexity per nucleotide of that sequence and use 

the relative complexity of sequences to compare whole genomes. 

Method 

 The methodology of this study focuses more on the interpretation of results than 

the actual algorithm used. The research team used a relatively simple compression 

algorithm based on LZ77 and LZ78 called CASToRe [7]. This method calculated the 

compressibility (and therefore complexity by the above logic) of genomes across 

different biological domains. This allowed the team to keep track of differences in 

fragments (exons, introns, and intergenic regions), while maintaining averages of the 

three fragment groups within each genome.  

Analysis 

 Using two metrics known as the “curtosis coefficient” and “skewness 

coefficient”, researchers manipulated the complexity data to show that there are indeed 

differences in the compressibility of genomes from Eukaryotes, Bacteria, and Archaea, 

which can be identified without ambiguity [7]. While this is important for classifying 
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different genomes on a life map, it is important to note that this method is not yet able to 

distinguish evolutionary paths.  

 However, it seems that by using the features specific to genomes of distinct 

domains collected from this study, it could be possible to create an “intelligently 

randomized” algorithm that could determine a likely evolutionary link between the 

genomes. Finding overarching differences in complexity is an important first step. The 

next should be attempting to generate these differences in complexity in an experimental 

setting that can be verified by repeated trials. Using hypothetical knowledge of how 

selection forces acted differently on eukaryotes and prokaryotes, as briefly mentioned in 

the conclusion of Menconi, et al could help limit the sample space of possible 

evolutionary paths.  

SlimGene, 2011 

 While most of the methods presented thus far have focused on sequence-level 

compression, Kozanitis, et al chose to focus on fragment-level compression. Kozanitis, et 

al states that current technologies output sequences as a series of fragments, and there are 

several widely conducted applications that do not require a costly intermediate step of 

constructing a complete sequence from these fragments (identifying SNPs, structural 

variation, etc). This algorithm provides a shortcut for research and should be considered a 

method tailored specifically to these applications. The program employs a complicated 

series of bit vectors to align each fragment to a reference and record errors in the 

alignment.  

Method 
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 SlimGene uses two bit vectors (arrays mapping to one bit per fragment) to 

compare fragments against a reference genome.  The first of these is called the “position 

vector”. This vector has one bit for every possible position in the genome, and each bit is 

set to 1 if some fragment maps to it, and 0 otherwise. The “refinement vector” accounts 

for the fact that the position vector is not perfect; it records divergences from the 

reference as a series of bits broken into two parts: the “Prelude”, which is always 3 bits, 

and the “ErrorInstruction” record, which is a variable number of bits. In short terms, the 

Prelude uses its three bits to indicate how many copies of that fragment there are, whether 

it aligns with a forward or backward strand in the reference genome, and whether or not it 

aligns flawlessly. If it does not align perfectly, the ErrorInstruction, through a set of 

codes, designates the change [6]. 

 

 

[6] 
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Analysis 

 SlimGene manages to compress a fairly large 124.7GB file down to 3.2GB, a 40x 

compression [6]. Though the percent compression is not quite as impressive as the above 

“email attachment” compression, it must be noted that this algorithm is tailored to 

techniques that do not require a complete genome to be constructed. Skipping this step 

entirely will be of value to researchers who only need a way to analyze characteristics of 

fragments.  

 The obvious optimization bottleneck on this algorithm’s compression is the 

refinement vector. The error encoding is clever enough that changing the representation 

would make minimal difference. However, minimizing the number of errors overall 

could make an impact. Maintaining several genomes with SNP variations is one way to 

effectively reduce the errors. These could be stored in an edit tree as variants of the first 

at the cost of a small space addition. An additional bit could be maintained for each 

fragment denoting which genome the fragment aligned with.  The additional space for the 

extra genomes would be outweighed by the errors that could then be aligned. Another 

idea could be based off of the idea that since alleles in different haplotypes tend to vary 

together, a set of haplotypes (again, maintained as an edit tree) could be included with the 

data. For any errors, a bit could be maintained denoting if a certain SNP was consistent 

with the haplotype of the previous error. If so, no additional information would be 

needed. Implemented correctly, these features could save on the storage of many errors. 

Expert, 2011 

 Expert is a probabilistic compression model that was developed by Cao, et al, in 

an effort to achieve superior performance without the use of a reference genome. The 
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method of calculation is extremely convenient for repeat element detection, pattern 

recognition, local alignment and phylogenetic analysis.   

Method 

 Expert maintains a set of “experts” that, through machine learning, determine a 

probability distribution for each symbol and encode that distribution in a “code word”. 

There are different types of experts, such as a Markov expert that uses a Markov model 

based on previous patterns of symbols and “repeat experts” that predicts based on 

specific repeated sequences. Experts are weighted differently based on accuracy, and 

their accuracy is reviewed each iteration [2].  

Analysis 

 Expert effectively compressed each of the genomes to well under 2 bits per 

symbol, as few as 1.3 for several of them [2]. This model is competitive with the other 

compression algorithms in use, and lends itself well to information extraction. Because 

the repeat experts are developed as the algorithm runs, a genome with a repeat expert that 

outperformed the Markov expert on part of the sequence points strongly to a repeat 

element. Sequence alignment can be performed using the Markov expert from one 

sequence, and the repeat expert from a separate sequence, and seeing if adding the repeat 

expert can increase compression. Finally, a competitively accurate phylogenetic tree can 

be produced by training a set of experts on one genome, and then compressing a different 

genome using the same experts to obtain their “mutual information” [2]. 

 These applications are a striking example of the effectiveness of using statistics to 

analyze biological properties. It is slower than some of the other discussed strategies, so 

if compression is the only goal then it may be more prudent to use a different method. 
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However the fact that it does not need to refer to a reference genome makes it an optimal 

choice for a single, longer genome if time is not an issue.  

 Undoubtedly there is a lot of potential for further research in the interdisciplinary 

field of machine learning and biology that this method employs. This same method is 

likely to apply well to protein compression, and also would probably excel at predicting 

the function of a sequence. This could be done by examining what training set, with 

unknown function, allowed the best compression of a sequence whose function is known.  

Summary 

 The field of DNA data compression has been vastly improved since Lempel and 

Ziv made their first contributions to the field of encoding. Several different novel 

techniques have been proposed, some of which are simply geared toward effective 

storage, while others are more application-driven to present information in a useful 

manner.  

 Methods that refer to a genome and record the differences seem to be the most 

effective in saving space.  The best of these methods appears to be the optimized 

reference genome method presented by Christley et al. There is a bound on compression 

of sequences, and it appears that we are getting quite close to as good as we can do with 

the technology that exists today. Until the next breakthrough in technology or methods 

becomes apparent and available, small modifications are going to be where gains in 

compression are made. Specific projects, such as transferring a whole database or 

skipping the intermediate step of creating a full sequence can lead to specifically 

optimized methods as well, like the coil or SlimGene programs.  
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 Statistical methods using machine learning, like Expert, provide exciting new 

opportunities for information extraction, and may replace existing programs for various 

applications. Though often sub-optimal in time, they are unprecedented in terms of 

performing tasks with minimal outside knowledge.  
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