
Samantha Woodward
BIOC 218

Winter 2011-2012

 1

A Critical Analysis of DNA Data Compression Methods

 Data compression is an area of research that has many applications spanning

different technological fields; among the most important of these fields is that of DNA

compression. With whole genome sequencing becoming increasingly practical and cost-

effective, the need for a superior space-saving algorithm is obvious. There are many

research projects and feasible future applications that necessitate having many different

sequenced genomes readily available in a form that can be easily decompressed and

examined.

 A single, uncompressed human genome in the form that is generated by

companies such as Helicos Biosciences, Pacific Biosciences, 454, and Illumina can take

up as much as 285 GB [6]. This amount of hard drive space usage makes keeping even a

few fully-sequenced, uncompressed genomes on the same machine unrealistic, while

transferring them between machines over a small bandwidth is out of the question. Data

compression is not a new topic, and at first several general-purpose compression

algorithms were used to store the DNA in a more efficient manner. Lempel-Ziv, or gzip

compression, is a universal compression algorithm that has been used to store genetic

data using an adaptive dictionary [10]. Standard encoding like gzip can reduce the space

needed per nucleotide in human DNA asymptotically to two bits, since we only have four

possible nucleotides. Eventually, algorithms were implemented that took characteristics

of DNA into consideration, such as reverse complementation or point mutation, which

could compress DNA beyond this previous gold standard. Several algorithms employing

this kind of tactic are GenCompress [3] and BioCompress [5].

Samantha Woodward
BIOC 218

Winter 2011-2012

 2

 Hundreds of algorithms have been proposed for DNA compression; this paper

aims to explore several innovative advances made in DNA data compression, and the

applications of these improved methods. Most of these algorithms operate with one of

two purposes: either to simply achieve the tightest compression possible and save storage

space on a computer, or compress the data in a fashion that allows for biological

inference about either a single genome or multiple genomes. While there can be overlap

between the two paradigms, in terms of influencing design they are quite different,

requiring separate examination and evaluation.

Standard Compression Goals

 Saving disk and network space by compression is undeniably a worthwhile

endeavor. This goal was instated long before the Human Genome Project was completed,

and has continued to be a popular research topic for statisticians and biologists alike.

While Lempel-Ziv provided a huge contribution that is still in use [10], advancements

have been made since that have further simplified the task of storing and transferring

genetic data. There is also evidence to suggest that while the major leaps in compression

have already been made, there is room for improvement, even in the most sophisticated

of algorithms.

coil, 2007

 There are two distinct ways of looking at DNA compression; the first of these is

to attempt to compress individual biological sequences. This is what previously

mentioned algorithms in this paper, GenCompress [3] and BioCompress [5], aimed to

accomplish. However once the HGP was completed, advents in sequencing made the

Samantha Woodward
BIOC 218

Winter 2011-2012

 3

need for full genome databases valid. At this point some researchers shifted their focus to

compressing entire databases worth of genome data. A paper published by Timothy

White and Michael Hendy in BMC Bioinformatics presents a software tool, “coil”, which

exploits the idea of edit-tree coding to compress an entire database worth of data to a

transmittable size [9].

Method

 coil revolves around a scheme that creates a series of trees of similar sequences,

encoded in a fashion that saves as much space as possible. This is achieved through the

following four-step process:

1. Using a similarity measure related to Levenshtein distance computation, coil

counts the number of length-k substrings that each sequence has in common with

all the other sequences and groups sequences of high similarity. These groups are

used to create a representative map with nodes symbolizing sequences and edges

between nodes weighted differently according to strength of similarity.

2. coil then constructs an encoding graph from the similarity graph computed in step

one. This graph is made up of rooted trees with directed arcs representing

similarity.

3. Each tree must be encoded as well. The root of each tree is stored as the full

sequence written out, and then each other sequence down the tree is “delta-

encoded” from its parents. That is, only differences from the parent sequence are

recorded as opposed to the entire sequence.

4. gzip or bzip is run on the entire graph to provide further compression [9].

Analysis

Samantha Woodward
BIOC 218

Winter 2011-2012

 4

 coil was tested against four other compression programs: bz2, nrdb+bz2, PPMdi,

and 7z. These are all variants of general compression algorithms (meaning they are not

specific to DNA, with the exception of nrdb+bz2, which eliminates duplicate sequences).

coil and 7z significantly outperformed all the other algorithms, with 7z edging coil on

small datasets and coil proving optimal for large datasets. [9]

 coil adopts a paradigm of “one off investment” which means at least one sequence

in the original database must be stored in entirety to transmit the entire data set. The

larger the dataset, the better the investment as the compression of more sequences far

outweighs the cost of transmitting one or several in full. This also means that for smaller

databases there are other methods that will, and did in the study’s published results,

perform better than coil. Another limitation arises from the strategy employed in making

the encoding trees. Because coil operates on a delta scheme for the encoding, this scheme

works best on databases with highly similar, shorter sequences. In a potential situation

where a database has been constructed to look for overarching genomic themes across

species (such as one mentioned later), this method would theoretically do poorly and

have problems other than space after compression. This is because the program attempts

to pseudo-align all the different genomes (using k-tuple indexing) to construct a

similarity graph. Using variable-length, dissimilar fragments could take either quadratic

time or GB of RAM, both of which are impractical on a normal machine.

Modified reference genome, 2008

 There are a variety of different compression methods that have been researched

and developed to produce results optimized for a specific need. Already mentioned are

the attempt to compress a single genome (GenCompress , BioCompress) and the attempt

Samantha Woodward
BIOC 218

Winter 2011-2012

 5

to compress a very large database of genomes (coil). An algorithm developed by

Christley, et al shows research that was tailored to meet the need of transmitting a smaller

number of genomes in a way that is extremely quick and easy. This algorithm assumes

that SNPs and indels have been provided for the genomes being analyzed, and seeks to

compress that variation data.

Method

 The algorithm designed in this paper makes small improvements upon the concept

of using a common reference genome and storing additional genomes as variations from

this one common reference [1]. There are four important novel details employed that

enhance compression impressively beyond using a reference alone.

 The first of these details is the use of variable-sized integers to store the position

of SNP variations along the chromosome. SNPs that occur in very early positions in the

chromosome do not require the full 4 bytes that are allotted to a standard integer data

type, and can therefore be represented by a one, two or three-byte integer.

 The second detail states that positions can be stored relative to the last variation,

known as “DELTA” positions. Because variations tend to happen more frequently in

close groups, using DELTA positioning reduces the size needed to represent position

further.

 The third technique employed uses a reference SNP map to decide whether a SNP

is one of the common bi-alleles. In this case, a bitmap is used to indicate if a SNP is

common or not. Depending on this answer, a variation can be stored using even less

space than the normal two bits required to represent a nucleotide.

Samantha Woodward
BIOC 218

Winter 2011-2012

 6

 Finally, K-mer partitioning is used to encode repeat sequences. Huffman encoding

is used to represent common substrings of a computed “size k” in the sequence in the

most efficient form possible [9].

Analysis

 The modifications made to the well-known idea of using a reference genome and

storing the differences may seem small, but they are extremely well thought-out and have

a large impact on the factor of reduction. Compared to using gzip on the original

variation map, this method provides a 4.5x better compression, resulting in a data size of

4.1MB – small enough, as they make their title, to send as an email attachment.

Human genomes as email attachments

Table 1.

Data sizes for compression techniques

Compression SNPs Deletions Insertions Total

 (KB) (KB) (KB) (KB)

Entire genome 3 169 831

Map to ref genome 68 519 1741 14 274 84 534

Map to ref genome + gzip 14 803 588 2687 18 078

VINT 13 733 765 803 15 301

VINT/DELTA 6475 507 712 7694

VINT/DELTA/DBSNP 3292 507 712 4511

VINT/DELTA/DBSNP/KMER 3292 507 302 4101

 [9]

Samantha Woodward
BIOC 218

Winter 2011-2012

 7

 Using variable-sized integers (data type int) instead of regular integers is a bit of a

no-brainer from a technological standpoint, but saving the positions in reference to each

other is smart, considering the relative distances will always be smaller than the distance

from the beginning of each chromosome. The only potential difficulty with this method is

that the entire chromosome must be decoded to look for a SNP variation; storing the

absolute positions enables an easier lookup.

 It’s also clever to use a bitmap with a SNP variation map. Most SNPs are bi-

allele, which means they can easily be represented as one of two common values using a

single bit instead of the usual two bits used to represent a nucleotide. A potential

improvement would be to maintain several different haplotypes instead of a single SNP

map. Using simple machine learning techniques, the program, based on previous “tag”

SNPs it had encountered, could accurately predict and store later SNPs with a diminutive

margin of error. This could be done without having to examine and potentially store an

“uncommon” version of every single SNP [8].

 Many of the advancements moving forward in compression are going to be small

and detail-oriented, and must make carefully calculated decisions about storage, as this

study did.

Biological Inference

 Though standard compression is important, several studies have attempted to

reach a slightly different goal: storing data in a manner that is not only efficient, but is

encoded in a manner that is a particularly useful form for biological applications. This

Samantha Woodward
BIOC 218

Winter 2011-2012

 8

can include phylogenetic sequence analysis, repeat element detection, structural variation

analysis, and biological complexity evaluation.

Life domain map, 2008

 Menconi, et al conducted a different kind study with the goal of using

compressibility of fragments as a measure to make inferences about the biological

complexity of different organisms, and even distinguish between different domains.

They’ve used the information content of a sequence, as defined by a lossless data

compression algorithm [7], to define complexity per nucleotide of that sequence and use

the relative complexity of sequences to compare whole genomes.

Method

 The methodology of this study focuses more on the interpretation of results than

the actual algorithm used. The research team used a relatively simple compression

algorithm based on LZ77 and LZ78 called CASToRe [7]. This method calculated the

compressibility (and therefore complexity by the above logic) of genomes across

different biological domains. This allowed the team to keep track of differences in

fragments (exons, introns, and intergenic regions), while maintaining averages of the

three fragment groups within each genome.

Analysis

 Using two metrics known as the “curtosis coefficient” and “skewness

coefficient”, researchers manipulated the complexity data to show that there are indeed

differences in the compressibility of genomes from Eukaryotes, Bacteria, and Archaea,

which can be identified without ambiguity [7]. While this is important for classifying

Samantha Woodward
BIOC 218

Winter 2011-2012

 9

different genomes on a life map, it is important to note that this method is not yet able to

distinguish evolutionary paths.

 However, it seems that by using the features specific to genomes of distinct

domains collected from this study, it could be possible to create an “intelligently

randomized” algorithm that could determine a likely evolutionary link between the

genomes. Finding overarching differences in complexity is an important first step. The

next should be attempting to generate these differences in complexity in an experimental

setting that can be verified by repeated trials. Using hypothetical knowledge of how

selection forces acted differently on eukaryotes and prokaryotes, as briefly mentioned in

the conclusion of Menconi, et al could help limit the sample space of possible

evolutionary paths.

SlimGene, 2011

 While most of the methods presented thus far have focused on sequence-level

compression, Kozanitis, et al chose to focus on fragment-level compression. Kozanitis, et

al states that current technologies output sequences as a series of fragments, and there are

several widely conducted applications that do not require a costly intermediate step of

constructing a complete sequence from these fragments (identifying SNPs, structural

variation, etc). This algorithm provides a shortcut for research and should be considered a

method tailored specifically to these applications. The program employs a complicated

series of bit vectors to align each fragment to a reference and record errors in the

alignment.

Method

Samantha Woodward
BIOC 218

Winter 2011-2012

 10

 SlimGene uses two bit vectors (arrays mapping to one bit per fragment) to

compare fragments against a reference genome. The first of these is called the “position

vector”. This vector has one bit for every possible position in the genome, and each bit is

set to 1 if some fragment maps to it, and 0 otherwise. The “refinement vector” accounts

for the fact that the position vector is not perfect; it records divergences from the

reference as a series of bits broken into two parts: the “Prelude”, which is always 3 bits,

and the “ErrorInstruction” record, which is a variable number of bits. In short terms, the

Prelude uses its three bits to indicate how many copies of that fragment there are, whether

it aligns with a forward or backward strand in the reference genome, and whether or not it

aligns flawlessly. If it does not align perfectly, the ErrorInstruction, through a set of

codes, designates the change [6].

[6]

Samantha Woodward
BIOC 218

Winter 2011-2012

 11

Analysis

 SlimGene manages to compress a fairly large 124.7GB file down to 3.2GB, a 40x

compression [6]. Though the percent compression is not quite as impressive as the above

“email attachment” compression, it must be noted that this algorithm is tailored to

techniques that do not require a complete genome to be constructed. Skipping this step

entirely will be of value to researchers who only need a way to analyze characteristics of

fragments.

 The obvious optimization bottleneck on this algorithm’s compression is the

refinement vector. The error encoding is clever enough that changing the representation

would make minimal difference. However, minimizing the number of errors overall

could make an impact. Maintaining several genomes with SNP variations is one way to

effectively reduce the errors. These could be stored in an edit tree as variants of the first

at the cost of a small space addition. An additional bit could be maintained for each

fragment denoting which genome the fragment aligned with. The additional space for the

extra genomes would be outweighed by the errors that could then be aligned. Another

idea could be based off of the idea that since alleles in different haplotypes tend to vary

together, a set of haplotypes (again, maintained as an edit tree) could be included with the

data. For any errors, a bit could be maintained denoting if a certain SNP was consistent

with the haplotype of the previous error. If so, no additional information would be

needed. Implemented correctly, these features could save on the storage of many errors.

Expert, 2011

 Expert is a probabilistic compression model that was developed by Cao, et al, in

an effort to achieve superior performance without the use of a reference genome. The

Samantha Woodward
BIOC 218

Winter 2011-2012

 12

method of calculation is extremely convenient for repeat element detection, pattern

recognition, local alignment and phylogenetic analysis.

Method

 Expert maintains a set of “experts” that, through machine learning, determine a

probability distribution for each symbol and encode that distribution in a “code word”.

There are different types of experts, such as a Markov expert that uses a Markov model

based on previous patterns of symbols and “repeat experts” that predicts based on

specific repeated sequences. Experts are weighted differently based on accuracy, and

their accuracy is reviewed each iteration [2].

Analysis

 Expert effectively compressed each of the genomes to well under 2 bits per

symbol, as few as 1.3 for several of them [2]. This model is competitive with the other

compression algorithms in use, and lends itself well to information extraction. Because

the repeat experts are developed as the algorithm runs, a genome with a repeat expert that

outperformed the Markov expert on part of the sequence points strongly to a repeat

element. Sequence alignment can be performed using the Markov expert from one

sequence, and the repeat expert from a separate sequence, and seeing if adding the repeat

expert can increase compression. Finally, a competitively accurate phylogenetic tree can

be produced by training a set of experts on one genome, and then compressing a different

genome using the same experts to obtain their “mutual information” [2].

 These applications are a striking example of the effectiveness of using statistics to

analyze biological properties. It is slower than some of the other discussed strategies, so

if compression is the only goal then it may be more prudent to use a different method.

Samantha Woodward
BIOC 218

Winter 2011-2012

 13

However the fact that it does not need to refer to a reference genome makes it an optimal

choice for a single, longer genome if time is not an issue.

 Undoubtedly there is a lot of potential for further research in the interdisciplinary

field of machine learning and biology that this method employs. This same method is

likely to apply well to protein compression, and also would probably excel at predicting

the function of a sequence. This could be done by examining what training set, with

unknown function, allowed the best compression of a sequence whose function is known.

Summary

 The field of DNA data compression has been vastly improved since Lempel and

Ziv made their first contributions to the field of encoding. Several different novel

techniques have been proposed, some of which are simply geared toward effective

storage, while others are more application-driven to present information in a useful

manner.

 Methods that refer to a genome and record the differences seem to be the most

effective in saving space. The best of these methods appears to be the optimized

reference genome method presented by Christley et al. There is a bound on compression

of sequences, and it appears that we are getting quite close to as good as we can do with

the technology that exists today. Until the next breakthrough in technology or methods

becomes apparent and available, small modifications are going to be where gains in

compression are made. Specific projects, such as transferring a whole database or

skipping the intermediate step of creating a full sequence can lead to specifically

optimized methods as well, like the coil or SlimGene programs.

Samantha Woodward
BIOC 218

Winter 2011-2012

 14

 Statistical methods using machine learning, like Expert, provide exciting new

opportunities for information extraction, and may replace existing programs for various

applications. Though often sub-optimal in time, they are unprecedented in terms of

performing tasks with minimal outside knowledge.

References

[1] M.C. Brandon, D.C. Wallace, P. Baldi. “Data structures and compression algorithms

for genomic sequence data”. Bioinformatics. (2009) 25:1731-1738.

[2] M.D. Cao, T. Dix, L. Allison. “A Biological Compression Model and Its

Applications”. Advances in Experimental Medicine and Biology. (2011) 696: 657-

666.

[3] X. Chen, S. Kwong, M. Li. “A compression algorithm for DNA sequences and its

applications in genome comparison”. Genome Informatics. (1999) 10:52-61.

[4] S. Christley, Y. Lu, C. Li, et al. “Human genomes as email attachments”.

Bioinformatics. (2009) 25:274-275.

[5] S. Grumbach, F. Tahi. “A new challenge for compression algorithms: genetic

sequences”. Information Processing and Management. (1994) 30:875-886.

[6] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, G. Varghese. “Compressing

Genomic Sequence Fragments Using SlimGene”. Journal of Computation

Biology. (2011) 18:401-413.

[7] G. Menconi, V. Benci, M. Buiatti. “Data compression and genomes: A two-

dimensional life domain map”. Journal of Theoretical Biology. (2008) 253:281-

288.

Samantha Woodward
BIOC 218

Winter 2011-2012

 15

[8] “What Is the HapMap?”. International HapMap Project. HapMap Data Coordination

Center. Web. 10 Mar 2012. <

http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html.en>

[9] W. White, M. Hendy. “Compressing DNA sequence databases with coil”. BMC

Bioinformatics. (2008) 9:242

[10] J. Ziv, A. Lempel. “Compression of individual sequences via variable-rate

encoding”. Information Theory, IEEE Transactions. (1978) 24:530-536.

